GATE (TF) Textile 2009 Question Paper Solution | GATE/2009/TF/18

Question 18 (Textile Engineering & Fibre Science)

The coefficient of cos4x in the Fourier Series of the function

    \[f(x)=\begin{cases}-1, & \text{ when } -\pi <x<0 \\ 1, & \text{ when } 0<x< \pi \end{cases} and \;\; f(x)=f(x+2\pi)\]

, for all x is

[Show Answer]

Option A is correct

    \[f(x)=\begin{cases}-1, & \text{ when } -\pi <x<0 \\ 1, & \text{ when } 0<x<\pi \end{cases} and \;\; f(x)=f(x+2\pi)\]


By fourier series-

f(x)=\frac{a_0}{2}+a_1 cosx+a_2 cos2x+a_3 cos3x+a_4 cos4x+..........a_n cosnx+....+\frac{b_0}{2}+b_1 sinx+.....b_n sinnx

a_0=\frac{1}{\pi}\int_{-\pi}^{\pi} f(x) cos nx dx

a_0=\frac{2}{\pi}\int_{0}^{\pi} 1 cos nx dx

a_0=\frac{2}{\pi}[\frac{1}{n} sin nx]_{0}^{\pi}



b_n=\frac{1}{\pi}\int_{-\pi}^{\pi} f(x) b_n sin nx dx


a_n=\frac{1}{\pi}\int_{-\pi}^{\pi} f(x) a_n cos nx dx

By putting these values in function, we get-

Coefficient of cos 4x is a_4

And all a1,a2,a3,a4….are equal to 0 (Ans)

Option A is correct.

Frequently Asked Questions | FAQs
GATE Textile Engineering and Fibre Science (TF) Question Papers | GATE Textile Question Answer | GATE Textile Solved Question Papers | GATE Textile Papers | GATE Textile Answer Key