GATE (TF) Textile 2014 Question Paper Solution | GATE/2014/TF/26

Question 26 (Textile Engineering & Fibre Science)

Of the two eigen values of the matrix \begin{bmatrix}1 & 2\\ 4 & 3 \end{bmatrix}

(A)One is positive, one is negative
(B)Both are positive
(C)Both are negative
(D)Both form a complex conjugate
[Show Answer]

Write Here

Given matrix-
A=\begin{bmatrix}1 & 2\\ 4 & 3 \end{bmatrix}
To calculate eigen values of the matrix-
\left |A-\lambda I \right |=0
\begin{bmatrix}1 & 2\\ 4 & 3 \end{bmatrix}-\lambda\times \begin{bmatrix}1 & 0\\ 0 & 1 \end{bmatrix} =0
\begin{bmatrix}1 & 2\\ 4 & 3 \end{bmatrix}-\begin{bmatrix}\lambda & 0\\ 0 & \lambda \end{bmatrix}=0
\begin{bmatrix}1-\lambda & 2\\ 4 & 3-\lambda \end{bmatrix}=0
\left |\begin{bmatrix}1-\lambda & 2\\ 4 & 3-\lambda \end{bmatrix} \right |=0
(1-\lambda)(3-\lambda)-8=0
(3-4 \lambda+\lambda^2)-8=0
(\lambda^2-4\lambda-5)=0
(\lambda^2-5\lambda+\lambda-5)=0
(\lambda-5)(\lambda+1)=0
\lambda=-1 , 5
These are the eigen values-
i.e. one is positive and one is negative.
Option A is correct.

Frequently Asked Questions | FAQs
GATE Textile Engineering and Fibre Science (TF) Question Papers | GATE Textile Question Answer | GATE Textile Solved Question Papers | GATE Textile Papers | GATE Textile Answer Key