GATE (TF) Textile 2014 Question Paper Solution | GATE/2014/TF/29

Question 29 (Textile Engineering & Fibre Science)

X is a continuous random variable whose probability density function is given by

    \[f(x)=\begin{cases}K(4x-2x^2) & for \:\:\:0<x<2 \\ 0 & otherwise \end{cases}\]

The value of the constant K, accurate to three decimal places, is……

[Show Answer]

Write Here

    \[f(x)=\begin{cases}K(4x-2x^2) & for \:\:\:0<x<2 \\ 0 & otherwise \end{cases}\]


\int_{0}^{2} K(4x-2x^2) dx=1
4K\int_{0}^{2} x dx-2K\int_{0}^{2} x^2 dx=1
4K[\frac{x^2}{2}]_{0}^{2}-2K[\frac{x^3}{3}]_{0}^{2}=1
4K[\frac{2^2}{2}-0]-2K[\frac{2^3}{3}-0]=1
4K[2]-2K[\frac{8}{3}]=1
8K-K[\frac{16}{3}]=1
\frac{8}{3} K=1
K=\frac{3}{8}
K=0.375 (Ans)

Frequently Asked Questions | FAQs
GATE Textile Engineering and Fibre Science (TF) Question Papers | GATE Textile Question Answer | GATE Textile Solved Question Papers | GATE Textile Papers | GATE Textile Answer Key