GATE (TF) Textile 2016 Question Paper Solution | GATE/2016/TF/04

Question 04 (Textile Engineering & Fibre Science)

Let A=\begin{pmatrix} 1 & \frac{1}{2}\\ \frac{1}{2} & 1 \end{pmatrix}. The determinant A^{-1} is equal to

(A)\frac{1}{2}
(B)\frac{4}{3}
(C)\frac{3}{4}
(D)2
[Show Answer]

Write Here

A=\begin{pmatrix} 1 & \frac{1}{2}\\ \frac{1}{2} & 1 \end{pmatrix}
A^{-1}=\frac{Adj A}{\left | A \right |}
Adj A=\begin{pmatrix} 1 & \frac{-1}{2}\\ \frac{-1}{2} & 1 \end{pmatrix}
A^{-1}=\frac{\begin{pmatrix} 1 & \frac{-1}{2}\\ \frac{-1}{2} & 1 \end{pmatrix}}{\left | A \right |}
A^{-1}=\frac{\begin{pmatrix} 1 & \frac{-1}{2}\\ \frac{-1}{2} & 1 \end{pmatrix}}{\frac{3}{4}}
A^{-1}=\frac{4}{3} (Ans)

Frequently Asked Questions | FAQs
GATE Textile Engineering and Fibre Science (TF) Question Papers | GATE Textile Question Answer | GATE Textile Solved Question Papers | GATE Textile Papers | GATE Textile Answer Key