GATE (TF) Textile 2018 Question Paper Solution | GATE/2018/TF/01

Question 01 (Textile Technology & Fibre Science)

Let A= \begin{bmatrix} a & b\\ 2 & -b \end{bmatrix} and X= \begin{pmatrix} -1\\ 1 \end{pmatrix}. If AX=\begin{pmatrix} -3\\ 1 \end{pmatrix}, then \left | A \right | is equal to

(A)2
(B)-2
(C)-6
(D)6
[Show Answer]

Write Here

A= \begin{bmatrix} a & b\\ 2 & -b \end{bmatrix} and X= \begin{pmatrix} -1\\ 1 \end{pmatrix}
AX=\begin{bmatrix} a & b\\ 2 & -b \end{bmatrix} \times \begin{pmatrix} -1\\ 1 \end{pmatrix}
AX=\begin{bmatrix} -a+b\\ -2-b \end{bmatrix}=\begin{pmatrix} -3\\ 1 \end{pmatrix}
So, -a+b=-3 and -2-b=1
Solve both equations-
a=0 and b=-3
Now, A=\begin{bmatrix} 0 & -3\\ 2 & 3 \end{bmatrix}
\left | A \right |=0 \times 3+2 \times -3
\left | A \right |=6 (Ans)

Frequently Asked Questions | FAQs
GATE Textile Engineering and Fibre Science (TF) Question Papers | GATE Textile Question Answer | GATE Textile Solved Question Papers | GATE Textile Papers | GATE Textile Answer Key