GATE (TF) Textile 2018 Question Paper Solution | GATE/2018/TF/43

Question 43 (Textile Technology & Fibre Science)

If A = \begin{bmatrix} 3 & 1\\ 1 & 3\end{bmatrix}, then the sum of all eigenvalues of the matrix M=A^2 -4A^{-1} is equal to ___17__.

[Show Answer]

Write Here

A = \begin{bmatrix} 3 & 1\\ 1 & 3\end{bmatrix}
To calculate eigen value-
\left |A-\lambda I \right |=0
\left |\begin{bmatrix} 3 & 1\\ 1 & 3\end{bmatrix}-\lambda \begin{bmatrix} 1 & 0\\ 0 & 1\end{bmatrix} \right |=0
\left | \begin{bmatrix} 3-\lambda & 1\\ 1 & 3-\lambda\end{bmatrix}\right |=0
[(3-\lambda)(3-\lambda)-1]=0
[(9-\lambda^2-6\lambda-1)]=0
[(-\lambda^2-6\lambda+8)]=0
(\lambda^2-4\lambda-2\lambda+8)=0
(\lambda-4)(\lambda-2)=0
\lambda=2,4
These are eigen values of matrix A.
Eigen values of matrix-
M=A^2 -4A^{-1}
M_1=2^2-\frac{4}{2}
M_1=2
and
M_2=4^2-\frac{4}{4}
M_2=15
Sum of eigen values of this matrix
M_1+M_2=2+15
M_1+M_2=17 (Ans)

Frequently Asked Questions | FAQs
GATE Textile Engineering and Fibre Science (TF) Question Papers | GATE Textile Question Answer | GATE Textile Solved Question Papers | GATE Textile Papers | GATE Textile Answer Key