GATE (TF) Textile 2019 Question Paper Solution | GATE/2019/TF/03

Question 03 (Textile Technology & Fibre Science)

The eigenvalues of the matrix \begin{pmatrix} 3 & 0 & 0\\ 0 & 2 & -3\\ 0 & 1 & -2 \end{pmatrix} are

(A)-1, 1, 3
(B)-3, 2, -2
(C)3, 2, -1
(D)3, 2, 1
[Show Answer]

Write Here

A=\begin{pmatrix} 3 & 0 & 0\\ 0 & 2 & -3\\ 0 & 1 & -2 \end{pmatrix}

A-\lambda \times I=0

\begin{pmatrix} 3 & 0 & 0\\ 0 & 2 & -3\\ 0 & 1 & -2 \end{pmatrix}-\lambda \times \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}=0

\begin{pmatrix} 3-\lambda & 0 & 0\\ 0 & 2-\lambda & -3\\ 0 & 1 & -2-\lambda \end{pmatrix}=0

(3-\lambda)[(2-\lambda)(-2-\lambda)+3]-0+0=0

(3-\lambda)[(-4+\lambda^2)+3]=0

(3-\lambda)[\lambda^2-1]=0

\lambda=3 , 1 , -1 (Ans)

These are the eigen values.

Frequently Asked Questions | FAQs
GATE Textile Engineering and Fibre Science (TF) Question Papers | GATE Textile Question Answer | GATE Textile Solved Question Papers | GATE Textile Papers | GATE Textile Answer Key