GATE (TF) Textile 2020 Question Paper Solution | GATE/2020/TF/26

Question 26 (Textile Engineering & Fibre Science)

Let . The value of L is L= \lim_{x\rightarrow \frac{\pi}{2}} (sinx)^{tanx}. The value of L is ________.

(A)0
(B)1
(C)2
(D)\infty
[Show Answer]

Write Here

L= \lim_{x\rightarrow \frac{\pi}{2}} (sinx)^{tanx}

If L= \lim (f(x))^{g(x)}

Then, L= e^\lim (f(x))^{g(x)}

L= e^\lim (f(x)-1)^{g(x)}

L= e^\lim_{x\rightarrow \frac{\pi}{2}} (sinx-1)^{tanx}

L= e^\lim_{x\rightarrow \frac{\pi}{2}} (sinx-1)(tanx)

This is the case of \frac{\infinity}{\infinity}

Multiply and devide this by (sinx+1)

L= e^\lim_{x\rightarrow \frac{\pi}{2}} \frac{sinx^2-1}{sinx+1} \times tanx

L= e^\lim_{x\rightarrow \frac{\pi}{2}} \frac{cos^2 x}{sinx+1} \times tanx

L= e^\lim_{x\rightarrow \frac{\pi}{2}} \frac{cos^2 x}{sinx+1} \times \frac{sinx}{cosx}

L= e^\lim_{x\rightarrow \frac{\pi}{2}} \frac{cos x \times sin x}{sinx+1}

Multiply and devide by 2

L= e^\lim_{x\rightarrow \frac{\pi}{2}} \frac{2cos x \times sin x}{2(sinx+1)}

L= e^\lim_{x\rightarrow \frac{\pi}{2}} \frac{sin2x}{2(sinx+1)}

By taking limit x-\frac{\pi}{2}

L=e^\lim_{x\rightarrow \frac{\pi}{2}} \frac{sin \pi}{2(sin\frac{\pi}{2}+1)}

L=e^0

L=1 (Ans)

Frequently Asked Questions | FAQs
GATE Textile Engineering and Fibre Science (TF) Question Papers | GATE Textile Question Answer | GATE Textile Solved Question Papers | GATE Textile Papers | GATE Textile Answer Key