GATE (TF) Textile 2022 Question Paper Solution | GATE/2022/TF/02

Question 2 (Textile Technology & Fibre Science)

\lim_{x \rightarrow 0}\frac{e^x - 1}{x^2} is equal to

(A)1
(B)0
(C)\frac{1}{2}
(D)2
[Show Answer]

\Rightarrow  \lim_{x\rightarrow 0} \frac{e^x -1}{x^2}

As we know the equation :

\Rightarrow  e^x=1+x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+...........+\frac{x^n}{n}

By putting the equation of e^x we get :

\Rightarrow  \lim_{x\rightarrow 0} \frac{e^x -1}{x^2}

\Rightarrow  \lim_{x\rightarrow 0} \frac{(1+x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+...........+\frac{x^n}{n})-1}{x^2}

\Rightarrow  \lim_{x\rightarrow 0} \frac{x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+...........+\frac{x^n}{n}}{x^2}

\Rightarrow  \lim_{x\rightarrow 0} \frac{x}{x^2} + \frac{1}2{} + \frac{x}{3} + \frac{x^2}{4} + ----+ \frac{x^{n-2}}{n}

By putting limit x \to 0

\Rightarrow  0 + \frac{1}{2} + 0 + 0 + ----- + 0

\Rightarrow  \frac{1}{2}

Frequently Asked Questions | FAQs
GATE Textile Engineering and Fibre Science (TF) Question Papers | GATE Textile Question Answer | GATE Textile Solved Question Papers | GATE Textile Papers | GATE Textile Answer Key