GATE (TF) Textile 2020 Question Paper Solution | GATE/2020/TF/01

Question 01 (Textile Technology & Fibre Science)

For the matrix \begin{bmatrix} 1 & 1 & 2\\ 0 & 1 & 3\\ 0 & 0 & 1 \end{bmatrix}, the eigenvalues of the matrix A^{2} are

(A)1, 0, 1
(B)1, 0, 0
(C)1, 1, 0
(D)1, 1, 1

[Show Answer]

Write Here

A=\begin{bmatrix} 1 & 1 & 2\\ 0 & 1 & 3\\ 0 & 0 & 1 \end{bmatrix}

Firstly we will calculate eigen values of the matrix A

A-\lambda \times I=0

I=Identity matrix

\begin{bmatrix} 1 & 1 & 2\\ 0 & 1 & 3\\ 0 & 0 & 1 \end{bmatrix}-\lambda \times \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}=0

\begin{bmatrix} 1-\lambda & 0 & 0\\ 0 & 1-\lambda & 0\\ 0 & 0 & 1-\lambda \end{bmatrix}

(1-\lambda)\times(1-\lambda)^2=0

\lambda=1,1,1 ,These are the eigen values of the matrix A

Then eigen values of the matrix A^2=\lambda^2, \lambda^2 ,\lambda^2

Eigen values of the matrix A^2=1^2 ,1^2 ,1^2

Eigen values of the matrix A^2=1,1,1 (Ans)

Frequently Asked Questions | FAQs
GATE Textile Engineering and Fibre Science (TF) Question Papers | GATE Textile Question Answer | GATE Textile Solved Question Papers | GATE Textile Papers | GATE Textile Answer Key