GATE (TF) Textile 2020 Question Paper Solution | GATE/2020/TF/27

Question 27 (Textile Engineering & Fibre Science)

The solution of the differential equation \frac{d^{2}y}{dx^{2}} + \frac{dy}{dx}-2y =0, which satisfies the conditions, y(0)=0, y'(0)=3 is___.

(A)e^{-x}
(B)e^{x}
(C)e^{x} + e^{-2x}
(D)e^{x} - e^{-2x}

[Show Answer]

Write Here

\frac{d^{2}y}{dx^{2}} + \frac{dy}{dx}-2y =0

\frac{d}{dx}=D

(D^2+D-2)y=0 , D=m

m^2+m-2=0

m^2+2m-m-2=0

(m+2)(m-1)=0

m=-2, 1

Complementary function(C.F)=y=c_1 \times e^{x}+c_2 \times e^{-2x}

Given ,y(0)=0

0=c_1 \times e^0+c_2 \times e^0

c_1=-c_2 ……………………………….(1)

Given, {y}'(0)=3

{y}'=c_1 \times e^{x}-2c_2 \times e^{-2x}

3=c_1-2c_2 ……………………………(2)

By solving equation no. 1 & 2.

c_1=1   ,  c_2=-1

Solution of differential equation, y=e^{x}-e^{-2x} (Ans)

Frequently Asked Questions | FAQs
GATE Textile Engineering and Fibre Science (TF) Question Papers | GATE Textile Question Answer | GATE Textile Solved Question Papers | GATE Textile Papers | GATE Textile Answer Key