GATE (TF) Textile 2021 Question Paper Solution | GATE/2021/TF/01

Question 01 (Textile Technology & Fibre Science)

Question (1): Let the function f(x,y) be defined as

    \[f(x,y)=\begin{cases} \frac{y}{|y|}\sqrt{2x^2+3y^2}, \quad y\neq 0 \\ 0, \quad \quad \quad  \quad \quad \quad \quad y=0 \end{cases}\]


Then \frac{\partial f}{\partial y}(0,0) is equal to

(A)\sqrt{2}
(B)\sqrt{3}
(C)0
(D)1
[Show Answer]

f (x,y) = \pm \sqrt{2x^2 + 3y^2}

\frac{\partial f}{\partial y} (x,y) = \frac{1}{2}\frac{1}{\sqrt{2x^2+3y^2}}\times (0+6y)

\frac{\partial f}{\partial y} (x,y) = \frac{3y}{\sqrt{2x^2+3y^2}}

\frac{\partial f}{\partial y} (x,y) = \frac{3}{\sqrt{2(\frac{x}{y})^2+3}}

\frac{\partial f}{\partial y} (0,0) = \frac{3}{\sqrt{2 \times 0 + 3}}

\frac{\partial f}{\partial y} (0,0) = \frac{3}{\sqrt{3}}

\frac{\partial f}{\partial y} (0,0) = \sqrt{3}

Frequently Asked Questions | FAQs
GATE Textile Engineering and Fibre Science (TF) Question Papers | GATE Textile Question Answer | GATE Textile Solved Question Papers | GATE Textile Papers | GATE Textile Answer Key