GATE (TF) Textile 2021 Question Paper Solution | GATE/2021/TF/02

Question 02 (Textile Technology & Fibre Science)

If a continuous random variable X has the following probability density function

    \[g(x)=\begin{cases} \frac{k}{4}x(2-x), \ \  0<x<2 \\ 0, \ \ \ \ \ \ \ \ \ \ \ \ \ \ otherwise \end{cases}\]


then the value of k is

(A)1
(B)2
(C)3
(D)4
[Show Answer]

write here

Answer / Solution

Given-

Probability density function=1

\int_{-\infty}^{+\infty} \times \frac{K}{4} \times x(2-x)dx=1

\int_{-\infty}^{0} \frac{K}{4} \times x(2-x)dx+\int_{0}^{2} \frac{K}{4} \times x(2-x)dx+\int_{2}^{+\infty} \frac{K}{4} \times x(2-x)dx=1

0+\int_{0}^{2} \times \frac{K}{4} \times x(2-x)dx+0=1

\int_{0}^{2} \times \frac{K}{4} \times x(2-x)dx=1

\frac{K}{4}\times \int_{0}^{2} x(2-x)dx=1

\frac{K}{4}\times \int_{0}^{2} (2x-x^2)dx=1

\frac{K}{4}\times (\int_{0}^{2} 2xdx-\int_{0}^{2}x^2dx)=1

\frac{K}{4} \left (  \left [ x^2 \right ]_0^2 -\frac{1}{3}\left [ x^3 \right ]_0^2   \right )=1

\frac{K}{4} \left ( (4-0) - \frac{1}{3}(8-0)\right ) =1

\frac{K}{4}\left ( 4-\frac{8}{3} \right ) =1

\frac{K}{4}\left ( \frac{4}{3} \right ) =1

K = 3


Frequently Asked Questions | FAQs
GATE Textile Engineering and Fibre Science (TF) Question Papers | GATE Textile Question Answer | GATE Textile Solved Question Papers | GATE Textile Papers | GATE Textile Answer Key